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J. Phys. A:  Math. Gen. 14 (1981) 241-257. Printed in Great Britain 

Finite-lattice methods in quantum Hamiltonian field 
theory: I. The Ising model 

C J Hamerf and Michael N Barber$ 
t Department of Theoretical Physics, Institute of Advanced Studies, Australian National 
University, Canberra, ACT 2600, Australia 
$Department of Applied Mathematics, University of New South Wales, P O  Box 1, 
Kensington, NSW 2033, Australia 

Received 9 April 1980 

Abstract. A finite-size scaling formalism is outlined for quantum Hamiltonian field theory 
on a lattice. The scaling behaviour in the neighbourhood of a critical point is predicted. To 
test the theory, exact results are generated for the mass gap, specific heat and susceptibility 
of the (1 + 1)-dimensional Ising model on a finite lattice. Finite-size scaling methods give 
results for the critical parameters which are comparable in accuracy with those obtained by 
standard perturbation series analysis methods. 

1. Introduction 

The Hamiltonian field theory analogue of the two-dimensional Ising model was 
presented by Fradkin and Susskind (1978). This theory corresponds to an infinite 
one-dimensional Ising chain in a transverse field and exhibits a phase transition, the 
exact nature of which is known from the analytic solution of Pfeuty (1970). Thus this 
model provides a nice testing ground for approximate methods of investigating the 
behaviour of lattice Hamiltonians. Strong-coupling perturbation expansions have been 
calculated by Hamer et a1 (1978,1979) for the mass gap, specific heat and susceptibility. 
From these expansions, critical parameters were then estimated by conventional ratio 
and Pad6 approximant methods. These estimates agreed particularly well with the 
expected behaviour. Various attempts (Drell et a1 1976, Jullien et a1 1978, Friedman 
1976, Subbarao 1976) at renormalisation group calculations have also been made. 
However, as yet these methods do not have an accuracy comparable with that of the 
series methods. 

In a recent Letter (Hamer and Barber 1980) we suggested the use of finite-size 
scaling (Fisher and Barber 1972b) to extrapolate finite-lattice quantities to the infinite- 
chain limit. In particular, we reported results for the (transverse) Ising model and the 
Hamiltonian version of two-dimensional O(N)-Heisenberg systems ( N  = 2,3)  which 
suggested that this method could rival the series approach. The purpose of this paper is 
to give a detailed analysis of the behaviour of the transverse Ising model on a finite 
chain. Our aim is twofold; to establish analytically the validity of finite-size scaling, and 
then to discuss in detail the extraction of critical parameters using finite-size scaling 
from relatively small chains. 

The paper is arranged as follows. In the next section, we briefly review finite-size 
scaling and extend it to Hamiltonian field theory. In Q 3 we diagonalise the transverse 
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242 C J Hamer and M N Barber 

Ising model Hamiltonian on a finite chain and evaluate the ground state energy and 
mass gap. The latter quantity is explicitly shown to satisfy finite-size scaling in § 4, 
where we also calculate the appropriate scaling function. In § 5 we discuss to what 
extent we can extract the limiting behaviour from results computed on relatively small 
chains. Section 6 closes the paper with an overall summary and discussion, in which we 
compare the accuracy of this approach to other approximations. 

2. Finite-size scaling 

Finite-size scaling was originally developed in statistical mechanics by Fisher and 
Barber (1972b) to describe the effects of finite sample size on thermodynamic 
singularities occurring at critical points (see also Fisher 1971, 1973). 

Let T(g)  be some quantity (e.g. specific heat) which in an infinite system diverges at 
a critical value (g,) of the coupling parameter g as 

W g )  =AlAgl-+ as Ag = g -g,+ 0. (2.1) 
Finite-size scaling then asserts that in a finite system of linear dimensions L = nuo, 
where a. is the lattice spacing, the behaviour of T(g ;  n )  is described by 

* ( g ;  n )  = n*’”Q‘r[n/S(g)l. (2.2) 

5 ( g )  -tolAgl-’, Ag s, 0. (2.3) 

Here [(g) is the correlation length of the infinite system which diverges as 

The ansatz (2.2) is expected to be valid uniformly? in the limits n +a, g + g,. To 
recover the behaviour (2.1) in the limit n + a at fixed (small) Ag we require 

ayit) = A [ ; * / ~ z - * I ~  a s t + a .  (2.4) 
In the event of a logarithmic singularity (fi = 0) as occurs, for example, in the specific 

heat of the two-dimensional Ising model, (2.2) must be modified (Fisher and Barber 
1972b, Fisher 1971) to 

‘Rg; fi)-’Wi; n )  Q~[n/5(g)I-Q.1.[n/5(gi)l,  (2.5) 
where gl is some fixed non-critical reference coupling. The limiting behaviour (2.4) of 
the scaling function Q y ( z )  is similarly replaced by 

a d z )  = - ( A / v )  In t ,  2 +cG. (2.6) 
At g,, (2.2) immediately predicts that 

v(gc; n )  Qy(O)n*’”, n +Co. (2.7) 

T(gc;  n )  = ( A / v )  In n + 0(1), (2.8) 

The analogous result for a logarithmic divergence 

n +a, 

foliows from (2.5). Note that in this case the amplitude is given in terms of ‘bulk’ 
quantities. If g, is known, these results allow the exponents of the transition in the 
infinite system (or at least the ratio +/Y) to be estimated from data on finite systems. If 

i There is a tacit assumption made at this point that T(g; n )  can be well-defined, e.g. (2.2) would not be valid 
for the spontaneous order which does not exist in a finite system. 
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g ,  is not known, as would be more typical, (2.7) and (2.8) remain valid if q ( g ;  n )  is 
evaluated at some ‘pseudo-critical’ coupling g c ( n )  (e.g. the value of g for which q’(g; n )  
is maximum), which approaches g ,  no slower than n-”” as n -+CO. 

These detailed predictions and indeed the basic ansatz (2.2) have been confirmed, 
often analytically, for many of the conventional models of statistical mechanics 
(Ferdinand and Fisher 1969, Barber and Fisher 1973a, b, Barber 1973, Ritchie and 
Fisher 1973, Capehart and Fisher 1976, Au-Yang and Fisher 1975). The utility of 
finite-size scaling in the analysis of Monte Carlo data has been illustrated by Domany et 
a1 (1975). 

It is fairly straightforward to extend these concepts and results to Hamiltonian field 
theory. The essential result we require (see e.g. Kogut 1979, Scalapino et a1 1972) is 
that the mass gap A, (i.e. the energy difference between the first excited state and the 
ground state of the Hamiltonian theory) corresponds to the reciprocal of the correlation 
length ( ( g ) .  Thus for an infinite system exhibiting a conventional continuous transition 
Am ( g )  vanishes as 

L & ! ) - I g - g c / ” ,  g + gc* (2.9) 

A m  ( g ;  t n-’Q.dn ” ” ( g  - g J I ,  n+w,  g-+g, ,  (2.10) 

Thus the behaviour of the mass gap in a finite system is described by the ansatz 

which follows by identifying in (2.2) with l / A m .  Note that, for future convenience, we 
have modified the argument of the scaling function. Equation (2.10) implies immedi- 
ately that 

f i m ( g c ;  n )  E ~-‘Q,\(o), n -,a, (2.11) 

a result we shall see is valid even for relatively small values of n. 
Equation (2.10) also suggests that g ,  could be estimated from the sequence of values 

of g for which successive ratios of Am(g; n )  and A,(g;  n + 1) exactly scale, i.e. the value 
of g for which 

n h m ( g ;  n )  = ( n  + l)A,(g; n + 1). (2.12) 

This result is actually equivalent to the criterion for determining g ,  that follows by 
extending ‘phenomenological renormalisation theory’ to Hamiltonian field theory 
(Sneddon and Stinchombe 1979). As originally formulated (Nightingale 1976), 
phenomenological renormalisation attempts to use finite-size results to derive an 
approximate recursion relation for the infinite system. Specifically, the correlation 
lengths t ( g ;  n )  and ( ( g ;  n’)  in two finite systems of ‘sizes’ n and a’  are assumed to be 
related by 

(2.13) 

with b = n / n ’ .  In the limit that n and n’ both become infinite with b fixed at some 
specific value, (2.13) represents the renormalisation of the correlation length under a 
renormalisation group transformation g + g’ = R ( g ) .  For finite n and n’, (2.13) is only 
approximate, but can be interpreted as defining an approximate mapping of the 
coupling constants from g to g’. The critical parameters now follow from the mapping 
in the standard way. This approach appears quite successful (Sneddon and Stinch- 
combe 1979, Nightingale 1976, 1977; Sneddon 1978, 1979). 

One problem remains. The asymptotic result (2.7) yields the ratio $/v. One would 
like to be able to determine (I, alone. Two posssibilities exist to do this. Firstly, if we 

5 ( g ;  n )  = b t k ’ ;  n ’ ) ,  
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invoke hyperscaling, v is related to the specific heat index CY by 

dv  = 2 -CY. (2.14) 

Thus the specific heat at gc scales as 

(2.15) 

(It should be noted that in applying (2.14) to a Hamiltonian theory, the dimensionality d 
must be taken to include the time dimension.) Alternatively, v can be estimated 
directly from the observation that 

[aAm(g; n)/aglg=gc= n -l+lW'(0) (2.16) 

d e /  ( 2  --a ) C(gc; n )  - a  

which follows by differentiating (2.10); or equivalently, 

(2.17) 

where p (g ;  n )  is the Callan-Symanzik p function of the finite-lattice system (Hamer er 
a1 1979). Equation (2.16) is also related to phenomenological renormalisation. 
According to the general renormalisation group theory (see e.g. Barber 1977), 
exponents follow from the recursion relations linearised about a particular fixed point. 
For a one-parameter recursion g -f g' = R (g), v is given by 

b'/" = (dg'/dg),=,*, (2.18) 

where b is the spatial rescaling factor of the transformation and g" the relevant fixed 
point. The derivative dg'/dg can be estimated from (2.1 3), which gives 

(2.19) 

where 5' = a[/@ This result is thus simply an assertion that the finite-scalingprediction 
(2.16) is an exact scaling at g*. 

3. Transverse Ising model on a finite chain 

The field theory version of the Ising model, in one space and one time dimension, has 
the simple Hamiltonian (Fradkin and Susskind 1978) 

Here the index m labels sites on a spatial lattice, while the time variable is taken to be 
continuous. The ai are Pauli matrices acting on a two-state spin variable at each site, g 
is a dimensionless coupling constant (proportional to temperature), a is the lattice 
spacing, M is the total number of sites and x = 2/g2. 

In the thermodynamic limit M + CO, this Hamiltonian has been diagonalised analy- 
tically by Pfeuty (1970). In particular, he found that the reduced mass gap 

F ( X ) ~ ( ~ ~ / ~ ) ( E I  -Eo), (3.2) 
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where Eo and El are the energies of the ground state and first excited state of (3.1), was 
given by 

F (x )  = 211 - X I .  ( 3 . 2 ~ )  

Thus the model exhibits a phase transition at x = 1 with the exponent v = 1. 
In this section we consider the behaviour of (3.1) on a finite chain of M sites with 

periodic boundary conditions. Using standard fermion techniques (Schultz et a1 1964) 
we are able to evaluate the mass gap exactly. Our analysis, in fact, parallels that of 
Schultz et a1 (1964) for the transfer matrix of the two-dimensional (Lagrangian) Ising 
model very closely. This is not very surprising since (3.1) is obtained as the extreme 
anisotropic limit of the d = 2 Ising transfer matrix (Fradkin and Susskind 1978). In view 
of this close relationship we omit all details of the diagonalisation of H. 

It is convenient :o define 
M M 2a 

g m = l  m = l  
w = - H = M -  a3(m)--X 1 a l ( m ) a l ( m + l ) ,  (3.3) 

where the periodic boundary conditions imply al(1) = al(M + 1). A transfer matrix of 
this form was considered by Schultz et a1 (1964). Using their methods, we find the 
following results for the two lowest eigenvalues of W. 

The ground state energy is 

. .  
( k  odd) 

and the first excited state energy is 
2M-1 .irk 

w l = M + 2 ( 1 - x ) -  1 A ( c )  
k = O  M '  (3.5) 

(k even) 

where the function A is defined as 

Hence the mass gap can be written as 

where 

These results form the basis of our subsequent analysis. 
Since for fixed x away from x, = 1, A(8)  is analytic in the strip 

(Im 81 <sinh-'[(l -x)/2&] (3.9) 
of the complex 8 plane, we expect the sum TN(x) to converge to its formal limit 

1 2=  
rm(x)  =% I, [ ( l  -x)2+4x sin2 de  (3.10) 

exponentially fast. This is confirmed in appendix 1, where we specifically establish that 

F(x, M)-2(1  -x)-O(exp{-M sinh-l[(l -x)/2&]}) a sM+co .  (3.11) 
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Right at x = x, = 1, the mass gap is given explicitly by 

which is readily evaluated to give 

F(1 ,  M )  = 2 tan(1~/4M).  

Hence as M -+ 00, 

F(1 ,  M )  = r / 2 M  + O ( A ~ - ~ ) ,  

which immediately confirms the finite-size scaling prediction (2.11). 

(3.12) 

(3.13) 

(3.14) 

4. Finite-size scaling of mass gap 

In the preceding section we saw that at x = x, = 1, the mass gap of the transverse Ising 
model on a finite chain scales in accord with the predictions of finite-size scaling. Away 
from x,, the approach to the infinite-chain limit was exponential in M. However, 
inspection of (3.11) shows that for (1 -x) of O(M- l )  this exponential approach will 
break down. This suggests introducing a scaled coupling 

p = (1 - x ) M  (4.1) 

M + m ,  p = O(1). (4.2) 

and investigating the behaviour of the mass gap in the limit 

This we do in this section and thereby explicitly confirm the basic finite-size scaling 
ansatz (2.10) for the mass gap. 

From (3.4) and (3.5) we have, substituting (4.1) for x, 

( k  cven) 

2 M - 1  1 / 2  

+ k = O  1 [$+4( 1-5) sin2($)] 
(k odd) 

= 2pM- ’+S2M(2p) -2S~(p )+O(M- -2 ) ,  

where 
(4.3) 

(4.4) 

For large N this sum can be analysed using the techniques of Barber and Fisher (1973a). 
This analysis is outlined in appendix 2, where we show that 

4N 2 p 2  
IT ITN IT 

S N ( p ) = - + -  

In this expression CE = 0.572 134 is Euler’s constant and 
m 

R 1 i . O  (2) = -4 1 [(r2 + z)”* - r - z/2r] 
r = l  

(4.5) 

(4.6) 
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is a remnant function (Fisher and Barber 1972a). Substituting (4.5) in (4.3) yields the 
required expansion of the mass gap in the form 

F(x,  M )  = M - ' Q ( p )  + 0(AK2). (4.7) 
The scaling function is given explicitly by 

P 2  
2 

T 4@ T 

2 77 2 
Q ( p ) = - + p + -- 1 n 2 - - R I 4," ( 5) + 2 TR 1 :,o ( 27) . (4.8) 

Since by definition (4.1) p is (1 - x ) M  and the exponent v has value unity (Pfeuty 1970), 
(4.7) is precisely of the form (2.10) asserted by finite-size scaling. 

Two limits of (4.8) are now of special interest: (i) p + 0 corresponding to x + 1 at 
fixed M ;  and (ii) p + 03 corresponding to M + 00 at fixed x (near p ) .  In the first limit we 
note that 

and thus 
R1:,o(z) = W 2 )  a s z + Q  (4.9) 

Qb) = 77-/2+0(p), (4.10) 

from which we immediately recover (3.14). In the opposite limit ( p  -+ 03) we require the 
asymptotic behaviour of the remnant function R l+,o(z). This is given in appendix D of 
Barber and Fisher (1973a): 

(4.1 1) R ~ ; , ~ ( ~ ) = Z  1 n 2 + 2 ~ ( ~ ~ - 1 n 2 - ~ ) + 2 2 ~ ' ~ - 4 + c o n s t . ~ z  e 

Substituting this result in (4.8) yields 

112 - 2 i r J z  

Q(@) = 2@ + o(e-4fi) (4.12) 

and thus for M + a3 at fixed (small) 1 - x, 

1, -.A4 ( 1 - x ) / 2 F(x,  M )  = 2(1 - x )  +O(e  

which reproduces (3.11). 

(4.13) 

5. Behaviour of short chains 

In the preceding sections we have analytically established that finite-size scaling is exact 
for the mass gap of the transverse Ising model in the limit M + 00, x + 1 with (1 - x ) M  of 
order unity. In this section we now want to consider the extrapolation of results derived 
for relatively short chains. To this end we have computed the mass gap, p function, 
specific heat and susceptibility for the Ising Hamiltonian (3.1) on a series of lattices of M 
sites with M s 11. The first three quantities can be numerically evaluated from the 
exact results (3.4) and (3.5). A similar closed expression for the susceptibility does not 
appear to be possible. However, exact numerical values can be computed by generating 
a finite-matrix representation of the Hamiltonian using strong-coupling eigenstates 
(Hamer and Barber 1980). Full details of this procedure are given in the following 
paper (Hamer and Barber 1981). 

5.1. Mass gap and p function 

Figure 1 shows the exact mass gaps as functions of x for various lattice sizes M. In the 
region x < 1, these curves evidently provide successively closer approximations to the 
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1 -  

Figure 1. Mass gap F ( x )  plotted against x. The broken curves are exact results for 
successively increasing lattice sizes and are labelled by the lattice size. The full curve is the 
exact result for the infinite lattice. 

mass gap for the infinite system as M increases. In the neighbourhood of the critical 
point, however, the finite-lattice results swing away and tend asymptotically to the real 
axis from above. Thus the mass gap never vanishes on a finite lattice, in accord with the 
absence of any transition in an Ising model which is infinite in fewer than two 
dimensions. 

To estimate the critical coupling we use (2.12) and compute xs such that RM(xs)  = 1, 
where R M ( x )  where 

is the ‘scaled mass gap ratio’. Successive estimates of xs are tabulated in table 1, and 
evidently converge rather rapidly to xc = 1. Empirically we find the convergence to be 
of order M - 3 .  Table 1 also lists values of R M ( x )  a t x c =  1. These also converge rapidly 

Table 1. Finite-size behaviour of mass gap ratio. 

3 0.97033 
4 0.984127 0.98980 
5 0.9 9 2 6 8 0 0.99532 
6 0.996032 0.99747 
7 0,997610 0.99848 
8 0.998450 0.99901 
9 0.998938 0.99932 

10 0,999241 0.9 9 9 5 2 
20 0,999913 0.99994 
30 0.999975 0.99998 
40 0.999993 
50 0.999997 
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to unity. Equation (3.14) implies that this approach is asymptotically of O(M-’), which 
is borne out by the numerical results even for rather short chains ( M s  10). Thus 
finite-size scaling appears to work remarkably well. It should be noted that this rapid 
approach to the asymptotic limit is related to the absence of confluent correction terms 
in the Ising model, other than the integrally spaced powers expected from any Taylor 
expansion. For other systems, where a significant correction-to-scaling exponent is 
expected, the approach to the asymptotic finite-size scaling limits will be slower. 
Indeed, this is a conceivable way to extract the correction-to-scaling exponent. 

The exponent Y may be estimated similarly, by using the p function 

Assuming the scaling behaviour (2.17), and the critical point xc= 1, one can form 
estimates of the exponent Y from the finite-lattice results tabulated in table 2. It can be 
seen that the 10-site lattice gives v correct to 0.5%; and extrapolation of the sequence 
of estimates using Pad6 or Shanks tables might be expected to procure a further 
order-of-magnitude increase in accuracy. 

Table 2. Successive estimates of the exponent v from the p function as a function of M. 

Lattice size = P ( g ) / g  Estimate of - l / v ,  
M ( x  = 1) ~=~lnB(M)-InB(M-l ) ] / [ lnM-In(M-l ) ]  

3 
4 
5 
6 
7 
8 
9 
10 
20 
30 
40 
50 

0.26795 
0.19891 
0.15838 
0.13165 
0.11267 
0.09849 
0.08749 
0.07870 
0.03929 
0.02619 
0.01964 
0.01571 

- 1.0743 
- 1,0356 
- 1,0210 
- 1,0139 
- 1.00990 
- 1.00740 
- 1,00574 
- 1.00459 
- 1~00108 
- 1.00047 
- 1.00026 
- 1,00017 

5.2. Specific heat 

In statistical mechanics, the specific heat is the second derivative of the free energy with 
respect to temperature: 

C = - T (a’ G/a T 2 ) .  (5.3) 
Now the field theory analogue (Kogut 1979, Scalapino et a1 1972) of the free energy is 
the ground state energy wo, and the analogue of temperature is the coupling g. Hence 
we can easily show that the strict analogue of the specific heat is 

c = -(x/a)[wb(x) + 2xw{ (x ) ] ,  ( 5  - 4 )  
where x = 2 / g 2  as before. Now the divergence (if any) at the critical point will occur in 
wg: and since we are not concerned here with any physical meaning, we shall define the 
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‘specific heat’ for the purposes of this paper to be 
.. 2 c=-x W;l(X). ( 5 . 5 )  

From Pfeuty’s solution, the ground state energy per site for the infinite lattice is 

4x (‘; ) m=- 
WO 2 
-= l--(l+x)E - m , 
M 7r (1 +x)*’ 

where E(7r/2; m )  is the complete elliptic integral of the second kind. Hence it follows 
that the specific heat per site is 

(5.7) 

From the properties of the elliptic integral (see e.g. Abramowitz and Stegun 1972) one 
may show that C / M  has a logarithmic singularity at the critical point x = 1, as one 
expects for the Ising model: 

Numerically the finite-lattice results (3.4) for the ground state energy w0 provide a 
sequence of lower bounds to the ground state energy per spin of the infinite chain, which 
converges rather rapidly. The analysis of appendix 1 establishes that for large M this 
approach is exponential. Again it appears that the behaviour is established even for 
small values of M. The corresponding estimates of the specific heat are shown in figure 
2. As expected, these curves are similar to those computed for finite two-dimensional 
Ising models (Ferdinand and Fisher 1969, Au-Yang and Fisher 1975). 

Now finite-size scaling predicts-recall (2.8)- that the finite-lattice estimates of the 
specific heat at x = 1 will increase logarithmically with M ;  and similarly for the peak 
values at each M. These hypotheses are tested in figure 3, where it can be seen that this 

X 

Figure 2. Finite-lattice results far the ‘specific heat’ - x 2 w i ( x )  as functions of x .  The curves 
are labelled as in figure 1. The full curve is the result for an infinite lattice. 
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2 4 6 8 10 12 0 
M 

Figure 3. Semi-logarithmic plots of ( a )  specific heat estimates at x = 1 and ( b )  peak values of 
specific heat against M. Straight lines have been drawn through each set of results. 

logarithmic behaviour is established immediately. Thus the scaling pattern again 
provides a good indication of the critical behaviour of the model. The slopes of the 
curves are 0,320, which agrees rather well with the theoretical prediction of A/u,  with 
U = 1 and A = l / ~  as given by (5.8). 

5.3. Susceptibility 

The Ising model Hamiltonian in the presence of an external magnetic field is 

a3(m) -xa l (m)a l (m  +1)+hal (m) l ,  ( 5 . 9 )  H = - Z [ l -  g 
2a m 

where h is the magnetic field. In statistical mechanics, the magnetic susceptibility is 
defined by 

The analogous quantity in field theory is therefore 

(5.10) 

(5 .11)  

An exact expression for this quantity has not been derived, to our knowledge; but an 
analysis of the strong-coupling series for x has been carried out (Hamer et al 1978) 
giving a critical exponent y = 1.76 *0.01, which is equal within errors to the expected 
value of i. 

The exact finite-lattice results for ,y are shown in figure 41-. These curves show no 
peak as a function of x, so the only available scaling test concerns the values at the 

t As noted earlier, these were computed numerically by a method described in the following paper (Hamer 
and Barber 1981). 
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0 1 
X 

Figure 4. A semi-logarithmic plot of finite-lattice susceptibilities against x .  Each curve is 
labelled by M as before. 

critical point, x = 1. Finite-size scaling (equations (2.7)) predicts that 

xh4 (x = 1) -MY’”, m +,CO. (5.12) 

These values, together with the ratio l o g [ ~ ~ / ~ ~ - ~ ] / l o g [ M / M  - 21 for successive values 
of M, are shown in table 3. The latter numbers appear to be converging rather 
smoothly, and give an estimate y / v  = 1 + 7 5 0 ~ 0 * 0 0 5 .  

Thus the scaling of the finite-lattice results at the critical point can be used to 
estimate the critical index with an accuracy comparable with that of the perturbation 
series analysis method (Hamer and Kogut 1979). An advantage of this method appears 
to be the smooth convergence of the successive estimates, as compared with the series 
ratios which very often show oscillatory behaviour (Hamer and Kogut 1979). 

Table 3. Successive estimates of the susceptibility critical index y versus M. 

M X M ( 1 )  log[XMM(1)/X,-,(1)I/log[M/M-21 

3 4.33 
5 10.78 1,786 
7 19.51 1.763 
9 30.35 1,758 

CO 1.750 * 0,005 (extrapolated estimate) 



Finite-lattice methods : I 253 

6. Summary and conclusions 

In this paper, we have studied the behaviour of the Hamiltonian field theory version of 
the Ising model on a finite lattice. In particular, we showed that finite-size scaling was 
exact for the mass gap of the theory, and finite-size scaling can be used to extract 
estimates of the critical parameters. 

The mass gap, for example, is expected to vary inversely as the size of the lattice at 
the critical point: by searching for this behaviour, one can locate the critical point with 
excellent accuracy. The specific heat and susceptibility at the critical point are expected 
to scale with the size of the lattice like M U / ” +  and M y / ”  respectively: by testing for this 
behaviour, one can estimate the critical exponents a / u  and y / u .  Similarly the p function 
should behave as M-l’”, which allows an independent determination of U .  It was 
discovered that this scaling behaviour was established very early (at low values of M )  for 
this simple model. 

We have found that these tests give results for the critical parameters which are 
comparable in accuracy with those obtained by standard perturbation series analysis 
methods (Hamer et a1 1979, Hamer and Kogut 1979). Furthermore, the finite-lattice 
estimates provide a picture of the quantities involved over the whole range of couplings, 
which should be extremely useful in cases where the critical behaviour is unusual, or 
where there is no critical point at all. It has been argued elsewhere (Hamer 1979) that 
these approximations should be more accurate and reliable than those obtained by 
joining Pad6 approximants to the perturbation power series. Hence we expect the 
method to be an important adjunct and alternative to that of series analysis. 

It is also useful to compare the accuracy of our determination of the critica1 
properties of the one-dimensional transverse Ising model with that of recent renor- 
malisation group calculations. These calculations all involve splitting the lattice into 
blocks which are diagonalised exactly. They differ in how the iteration is implemented. 
The simplest scheme (Drell et a1 1976, Jullien et a1 1978) is to completely neglect all 
block states except a few of the lowest energy. The most accurate calculation of this 
form (Jullien er a1 1978) using a block of 7 sites gave (in our notation) xc= 1.053, 
1, = 1-16  and y = 1-73. Somewhat better accuracy for xc and U but not for the exponents 
p or y is obtained if all states of a block are retained and effective Pauli spin operators 
introduced at each iteration (Friedman 1976, Subbarao 1976). The recursion relation, 
however, can now only be realised perturbatively in the coupling constants. To first 
order this yields (Subbarao 1976) x c =  1-01, U = 1.13. 

Like our approach, such renormalisation group calculations can also produce 
‘pictures’ of physical quantities for all couplings. Unlike our pictures, these approxi- 
mations are non-analytic. On the other hand, our results have the advantage of 
approaching the limiting infinite-system curves rather rapidly except in the immediate 
vicinity of the critical point. This is certainly not the case for a renormalisation group 
calculation as can be seen by comparing our figure 2 of the specific heat with figure 2 of 
Julien et a1 (1978) for the same quantity. 

A renormalisation group calculation which is rather closer in spirit to our approach 
is that of Sneddon (1978) using phenomenological renormalisation. As discussed in D 3 
phenomenological renormalisation is related to finite-size scaling; the key equation 
being equivalent to equation (2.12). The significant differences between Sneddon’s 

+This  is the general result. In the special case of the two-dimensional Ising model we have a =0 ,  and 
logarithmic behaviour occurs instead. 
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work and that reported here are the use (i) of exact finite-lattice eigenvalues and (ii) of 
finite-size scaling to extract other exponents. 

The use of exact finite-lattice eigenvalues is, of course, special to this rather simple 
model. For more complex and interesting models, the finite-size eigenvalues have to be 
determined numerically (Hamer and Barber 1981) by some appropriate algorithm. In 
the following paper we describe two methods for doing this, and show that finite-size 
scaling remains a powerful and useful tool for investigating the behaviour of the limiting 
system. 
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Appendix 1. Asymptotic behaviour of mass gap for fixed x 

In this appendix we show that, for fixed x away from x,, the mass gap F ( x , M )  
approaches its infinite-lattice limit exponentially fast in Al.  It is convenient to rewrite 
(3.20) for F(x,  M )  as 

F ( x ,  M )  = 2( 1 - x) + 2 M 4  F 2 M ( X )  - f M ( X  )I, (Al.1) 

where 

with 
A(ej = (,12+2-2 COS e)''' 

(A1.2) 

(A1.3) 
and 

A = (1 - x ) ~ / x .  (A1.4) 

For fixed non-zero A ,  the sum ?,(XI can be analysed using the Poisson summation 
formula (see e.g. Barber and Fisher 1973a). 

Let 

where 

Hence substituting (A1.5) in (A1.2) we obtain 
m 

R V f ( x ) = c o +  c ( C l M + C - l M ) ,  
1=1 

(A1.5) 

(A1.6) 

(A1.7) 



Finite-lattice methods : I 255 

where 
1 "  

2Tr -m 
C O = -  &19)d6 (A1.8) 

is the limit of f M ( x )  as M -+ 00. To estimate the correction terms we therefore need the 
behaviour of ck for large k. To analyse ck we put 

(A1.9) 1. 1 1  w =216, w, = sinh- (?A),  

so that 

i ( 0 )  = 2[sinh( w, + w)sinh(w, - w)]"~,  ( A l .  10) 

and the contour of integration in (A1.6) now runs from w = -$Ti to $Ti. Shifting the 
contour to run along Re w = w, yields 

Ck = C-k =e-2'k 'WcAk(h),  ( A l . l l )  

where 
; Tri 

(A1.12) 

The singularity is now at w'  = 0 but is clearly integrable. Further deformation of the 
contour so that it runs along the two sides of the branch out from w'  = 0 to 00 yields 

Ak(A) =$ [ e -21kIw' [sinh(-w') sinh(w'+2wC)]'/' dw. 
Trl 

(A1.13) 

with 

p ( s )  =-{[sinh(s e-irr) sinh(s +2w,)J1"-[sinh(sei") sinh(s +2wC)]"'] 
1 

Tr1 

= 2s "'(sinh 2 w,)~" + O(s) ass+O.  (Al .  14) 

Since for large k the dominant contribution to the integral in (A1.13) comes from the 
behaviour of p ( s )  for small s, the final estimate in (A1.14) immediately gives 

(Al .  15) Ak(A) = 2J?r(sinh 2W,)1/2/(2k)3/2. 

Thus 

T ~ ( ~ )  -c0+2(2Tr/x)(1 -x2)1 /2  e-2Mwc/(2~)3/2 ,  (A l .  16) 

which on substitution in ( A l . l )  immediately yields the results cited in the text. We also 
note that (A1.16) establishes that the ground state energy per spin (and its relevant 
derivatives) also converge exponentially. 

Appendix A2. Analysis of SN(p)  

In this appendix we analyse the sum 
N-1 F 2  

k = O  N 
s N ( p ) =  c [ T + 4 s i n 2  (A2.1) 

in the limit N -+ 00 with ,U = O(1)  using the techniques of Barber and Fisher (1973a) 
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(hereafter denoted BF). Indeed this sum is very similar to one analysed by these authors 
and thus we only outline the analysis. 

Separate off the term k = 0 and decompose the root as 

(U2+7J2)1/2= u [ ( l + u 2 / u 2 ) 1 ~ 2 - 1 - u 2 / 2 u 2 ] + v + u 2 / 2 v ,  (A2.2) 

where 

v = 2 sin(lrk/N), U = p/N. 

Thus we can write 

(A2.3) 

(A2.4) 

Lf NI 

X {[l + p 2 / 4 N 2  ~ i n ~ ( l r k / N ) ] ~ ’ ~ -  1 -p2/8N2 sin2(lrk/N)} (A2.5) 
k = l  

lrk M - 1  

g 2 = 2  1 s i n ( y )  
k = l  

and 

(A2.6) 

(A2.7) 

Note that in gl  we have reduced the range of the sum to k s [;NI, where [XI denotes 
the largest integer less than or equal to x. This sum can now be analysed for large N as in 
BF (p24) by (i) replacing sines by their arguments and (ii) extending sums to infinity with 
the error estimated as in BF. This gives 

lr 
g1=---R1:,o N 

(:;2) - + 0 ($) 9 

where R ( 2 )  is the remnant function defined in (4.6). 
The sum g2 can be evaluated exactly: 

(A2.8) 

(A2.9) 

The final sum g3 is contained in BF (analysed originally by Ferdinand and Fisher 
(1969)). The essential sum is 

N - 1  

k = l  
(A2.10) 

where CE is Euler’s constant. Collecting these results together gives 

which is the result quoted in the text. 



Finite-lattice methods ; I 257 

References 

Abramowitz M and Stegun A 1972 Handbook of Mathematical Functions (New York: Dover) 
Au-Yang H and Fisher M E 1975 Phys. Rev.  B 11 3469 
Barber M N 1973 Aust. J. Phys. 26 483 

~ 1977 Phys. Rep. 29C 1 
Barber M N and Fisher M E 1973a A n n .  Phys., N Y  77 1 
~ 1973b Phys. Rev. A 8 1124 
Capehart T W and Fisher M E 1976 Phys. Rev. B 13 5021 
Domany E, Mon K K, Chester G V and Fisher M E 1975 Phys. Rev. B 12 5025 
Drell S D, Weinstein M and Yankielowicz S 1976 Phys. Rev.  D 14 487 
Ferdinand A E and Fisher M E 1969 Phys. Reo. 185 832 
Fisher M E 1971 in CriticalPhenomena, Proc. Znt. SchoolofPhysics ‘Enrico Fermi’, Varenna, 1970, CourseNo 

- 1973 J. Vac. Sci. Technol. 10 665 
Fisher M E and Barber M N 1972a Arch. Rat. Mech. Anal .  47 205 
- 1972b Phys. Rev. Lett. 28 1516 
Fradkin E and Susskind L 1978 Phys. Rev.  D 17 2637 
Friedman 2 1976 Phys. Reo. Lett. 36 1326 
Hamer C J 1979 Phys. Lett. 82B 75 
Hamer C J and Barber M N 1980 1. Phys. A :  Math. Gen. 13 L169 
- 1981 J. Phys. A :  Math. Gen. 14 259-74 
Hamer C J and Kogut J 1979 Phys. Rev. B 20 3859 
Hamer C 3, Kogut J and Susskind L 1978 Phys. Rev.  Lett. 41 1337 
- 1979 Phys. Rev.  D 19 3091 
Jullien R,  Pfeuty P, Fields J N and Doniach S 1978 Phys. Reo. B 18 3568 
Kogut J 1979 Rev. Mod. Phys. 51 659 
Nightingale M P 1976 Physica 83A 561 
- 1977 Phys. Left. 59A 486 
Pfeuty P 1970 Ann. Phys., N Y  57 79 
Ritchie D S and Fisher M E 1973 Phys. Rev.  B 7 480 
Scalapino D J, Sears M and Ferrell R A 1972 Phys. Rev.  B 6 3409 
Schultz T D, Lieb E H and Mattis D C 1964 Reo. Mod. Phys. 36 856 
Sneddon L 1978 J. Phys. C: Solid Sr. Phys. 11 2823 
- 1979 J. Phys. C: Solid St. Phys. 12 3051 
Sneddon L and Stinchcombe R B 1979 J. Phys. C: Solid St. Phys. 12 3761 
Subbarao K 1976 Phys. Rev. Lett. 37 1712 

51 ed M S Green (New York: Academic) 


